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1 Introduction

In two dimensional space-time some boson theories can be mapped into corresponding

fermion theories, and fermion theories vice versa . The relation between the field operators

of the boson theories and the fermion theories is known as the Fermi-Bose equivalence [1, 2],

which has been an essential tool to study various important models in particle physics,

string theory and condensed matter physics. Often the fermionized or the bosonized theory

turns out to be much easier to treat than the model which we begin with. Sometimes we

obtain exact results simply by fermionizing or bosonizing the models. A recent example is

the rolling tachyon [3–5], which describes the time evolution of unstable D-branes in string

theory. The rolling tachyon is described by a string theory on a disk with a boundary

potential due to the tachyon condensation on a D-brane. If a Wick rotation to the Euclidean

time is taken, the action for the rolling tachyon becomes a string theory action on a disk with

a marginal periodic potential. This action corresponds to the one dimensional quantum

Brownian motion (QBM) action [6, 7] at its critical point. The marginal periodic potential

can be rewritten as a boundary mass term for a fermion, which is quadratic in the fermion

field, if the theory is fermionized. Thus, the theory becomes exactly solvable. An explicit

expression of the boundary state for the rolling tachyon has been given in refs. [8, 9].
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If we consider a D-brane of the bosonic string theory with one direction wrapped

on a circle, we may find a tachyon mode coming from the first momentum mode of the

standard tachyon along the circle direction, which leads us to an inhomogeneous rolling

tachyon. In condensed matter physics, this inhomogeneous rolling tachyon corresponds to

the spin-dependent Tomonaga-Luttinger model with a scattering potential, which describes

quantum transport through a single barrier [10]. The critical behavior of the model has be

studied in ref. [8, 9], applying the fermionization and the boundary state formulation. The

inhomogeneous rolling tachyon can be mapped onto a Thirring model with two flavours with

a boundary mass if fermionized. At the critical point the model reduces to a SU(2)×SU(2)

fermion theory with a boundary mass term, which is exactly solvable.

The model we will discuss in this paper, utilizing the Fermi-Bose equivalence and the

boundary state formulation, is the QBM [12–14] on a triangular lattice. The action for

the model is equivalent to a Polyakov string action on a disk with a periodic boundary

potential on a triagular lattice. In order to fermionize the model we need to introduce

three species fermion fields and appropriate Klein factors, which ensure the fundamental

anti-commutation relations between the fermion fields. Here, it should be noted that the

construction of Klein factors for the model with three species fermion fields is much more

involved than the cases of model with one or two species of fermion fields. In this paper

we will elaborate the construction to provide an explict expression for Klein factors.

There are two conventional methods to construct the Klein factors [15]: The first one is

to introduce additional anticommuting factors, which obey the Clifford algebra. They are

usually represented by direct products of Pauli matrices. It requires an extra Hilbert space

on which the Klein factors act. The second one is to make use of the zero modes of the

momentum fields, which are conjugate to the boson fields. One may find that exponentials

of the zero modes of the momentum fields anti-commute the exponentials of the boson

fields, using the Baker-Campbell-Hausdorff formula. Both methods work equally well for

the theories defined on the two dimensional space-time without a boundary. If the two

dimensional space-time on which the theory is defined has a boundary, we need to refine

the conventional methods to construct the Klein factors. It is desirable that the boundary

conditions for the simple boundary states such as the Neumann boundary state and the

Dirichlet boundary state are represented linearly in terms of both boson fields and fermion

fields only. However, with the conventional Klein factors, it seems difficult to construct

such simple boundary states for the systems. If we adopt the conventional methods, the

Klein factors enter into the boundary condtions as we will see shortly.

We will derive all the necessary conditions for the Klein factors not to enter into

the fermionized action and show that there exist some solutions to them by an explicit

construction. The newly constructed Klein factors help us to analyze the critical behavior

of the model, since with them the QBM model can be mapped into a Thirring model with

three flavors. At the critical point the QBM model can be mapped into a SU(3) × SU(3)

free fermion theory with quadratic boundary terms at the critical point. Hence, it becomes

an exactly solvable model at the critical point.
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2 The quantum brownian motion on a triangular lattice

The Brownian motion of a classical particle on a triangular lattice is described by a simple

Langevin equation which contains a frictional force and a conservative force due to a

periodic potential on the lattice. The frictional force may be produced by coupling the

particle linearly to a bath or an environment which consists of an infinite set of Harmonic

oscillators as Caldeira and Leggett [16] suggested. If we integrate out the infinite degrees

of freedoms of the bath, we obtain the Euclidean action for the QBM as follows

SQBM =
η

4π

∫ β

0
dtdt′

(X(t) − X(t′))2

(t− t′)2
+
M

2

∫ β

0
dtẊ2 + V0

∫ β

0
dt

3
∑

i=1

cos (ki · X) (2.1)

where β = 1/T and

k1 =

(

1

2
,

√
3

2

)

, k2 =

(

1

2
,−

√
3

2

)

, k3 = (−1, 0) . (2.2)

The two dimensional vector X = (X1,X2) describes the trajectory of the Brownian particle

as a function of the imaginary time. In eq. (2.1) η is the frictional constant which measures

the strength of the coupling to the bath and M is a mass for the Brownian particle.

The third term denotes the periodic potential with a dimensionless coupling constant V0.

Throughout this paper, we set ~ = kB = 1.

The first term is the non-local friction term, which results from the integration over

the infinite degrees of freedoms of the bath in the path integral. It is due to this non-local

interaction that the QBM exhibits non-trivial a phase transition despite being a quantum

mechanical model. Since we are only interested in the long-time behavior of the system, we

may ignore the kinetic term, which only plays a role of regulator in the long-time analysis.

Identifying the time dimension as the boundary of a disk diagram, we may map this

model into a string theory action with the periodic boundary potential on a triangular

lattice

S =
η

4π

∫

dτdσ∂αX · ∂αX +
V

2

∫

dσ

3
∑

i=1

(

eiki·X + e−iki·X
)

(2.3)

where σ = 2π
β t and X(τ = 0, σ) = X(t) and V = V0

β
2π . We see that the slope parameter

α′ of the corresponding string theory is 1/η. The non-local action may be obtained as we

integrate the bulk degrees of freedom of X(τ, σ) out in the path integral for the partition

function, leaving the boundary degrees of freedom X(τ = 0, σ) only. The bulk degrees of

freedom of X play the role of the bath.

We may embed the two dimensional model into the three dimensional one, introducing

a free auxiliary field X3

1

4πα′

∫

dτdσ

2
∑

a=1

∂αX
a∂αXa → 1

4πα′

∫

dτdσ

3
∑

a=1

∂αX
a∂αXa (2.4)
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where α′ = 1/η. Since the free field X3 does not appear in the boundary interaction terms,

its contributions to the partition function and the expectation values of physical operators

can be easily factored out. As we shall see, with inclusion of the auxiliary field X3, the

underlying symmetry of the model, which turns out to be SU(3) × SU(3) at the critical

point, becomes manifest, if the model is correctly fermionized.

In order to fermionize the system it may be convenient to rewite the action in terms

of (φ1, φ2, φ3) which is related to (X1,X2,X3) by an O(3) rotation

φ1 =
1√
2
X1 +

1√
6
X2 +

1√
3
X3,

φ2 = − 1√
2
X1 +

1√
6
X2 +

1√
3
X3, (2.5)

φ3 = −
√

2

3
X2 +

1√
3
X3.

If we rewrite the action for QBM in terms of φa, a = 1, 2, 3, we have

S = − 1

4πα′

∫

dτdσ∂αφ
a∂αφa +

V

2

∫

dσ

3
∑

a=1

(

e
i√
2
(φa−φa+1) + e

− i√
2
(φa−φa+1)

)

(2.6)

where φa+3 = φa.

3 Boundary state and fermionization

We consider the critical case where α′ = η = 1 first and will return to the general case

later. The most efficient way to calculate the partition function and correlation functions of

physical operators is to construct a boundary state. Since, moreover at the critical point the

boundary potential may becomes quadratic in fermion fields if the model is appropriately

fermionized, we may calculate the exact form of the boundary state. Thus, the partition

function and other correlation functions of physical operators may be evaluated exactly at

the critical point if the Fermi-Bose equivalence is used. To be explicit, if once the boundary

state |BQBM〉 is constructed, the partition function for the QBM may be written as

ZQBM = 〈0|BQBM〉 =

∫

D[X] exp (−SQBM) , (3.1)

and the correlation functions of physical operators in terms of the boundary state as

〈O(t1) · · ·O(tn)〉 = 〈0|〈O(σ1) · · ·O(σn)|BQBM〉 (3.2)

where σi = 2πti/T and |0〉 is the ground state of the corresponding string theory.

If the periodic boundary interaction is absent, the boundary conditions for φa, a =

1, 2, 3, would be Neumann: (φa
L − φa

R) |σ=0 = 0. Thus, the boundary state for DHM may

be written formally as

|BQBM〉 =: exp

[

−V
2

∫

dσ

3
∑

a=1

(

e
i√
2
(φa−φa+1) + e

− i√
2
(φa−φa+1)

)

]

: |N,N,N〉 (3.3)
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where (φa
L − φa

R) |N,N,N〉 = 0. Hence we may write the boundary state and the boundary

interaction as

|BQBM〉 = : exp

[

−V
2

∫

dσ

3
∑

a=1

(

ei
√

2(φa
L−φa+1

L ) + e−i
√

2(φa
L−φa+1

L )
)

]

: |N,N,N〉 (3.4)

= : exp

[

−V
2

∫

dσ

3
∑

a=1

(

ei
√

2(φa
R−φa+1

R ) + e−i
√

2(φa
R−φa+1

R )
)

]

: |N,N,N〉

where V may be renormalized. (The boson field φ may be written as a sum of the left

moving φL and the right moving φR boson fields, defined as follows: φL = 1√
2
xL + 1√

2
pLσ+

i√
2

∑

n 6=0
αn
n e

−niσ, φR = 1√
2
xR − 1√

2
pRσ + i√

2

∑

n 6=0
α̃n
n e

niσ).)

Since e
−i

√
2φa

L/R has the same conformal dimension as the fermion field operator ψa
L/R,

the boundary interaction term may be equivalent to a sum of quadratic terms in fermion

field operators. But, we must treat the Klein factors with care before setting up the

correct Bose-Fermi equivalence. We will apply the conventional methods to constuct the

Klein factors first and will point out that the conventional ones are not adequate to deal

with the theories defined on the space-time with a boundary and to construct the boundary

states for the corresponing theories. Let us consider the simplest case of a single free boson

theory and the simple boundary state such as the Neumann boundary state. We may

represent the fermion operators in terms of the boson field operators as

ψL = ηL : e−i
√

2φL :, ψR = ηR : ei
√

2φR : . (3.5)

In order to ensure the anti-commutation relations between the fermion operators we may

require that they satisfy the Clifford algebra {ηi, ηj} = 2δij , i, j = L,R, and they com-

mute with the boson operators φL/R. This is one of the conventional methods to con-

struct the Klein factors. They are usually represented by the Pauli matrices. To explicit,

ηL = σ1, ηR = σ2. The Neumann boundary condition is simply given in terms of boson

field operators as

φL|N〉 = φR|N〉. (3.6)

But its fermion representation cannot be written in terms of the fermion fields only

ψL|N〉 = ηLηRψ
†
R|N〉 = iσ3ψ

†
R|N〉, ψ†

L|N〉 = ηLηRψR|N〉 = iσ3ψR|N〉. (3.7)

The Klein factors enter into the boundary condition. The free boson field theory defined

on a space-time with a boundary is not mapped onto a free fermion field theory by the

Pauli matrix representation of the Klein factors.

The other conventional representation of the Klein factors is to make use of the zero

modes of the momenta, conjugates to the boson field operators φL and φR; ηi = eiπ
P

j<i pj .

For the single boson theory, we may write

ψL = e−i
√

2φL , ψR = eiπpLei
√

2φR . (3.8)

– 5 –
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The Neumann boundary condition is now expressed in term of the fermion field operators as

ψL|N〉 = eiπpLψ†
R|N〉, ψ†

L|N〉 = e−iπpLψR|N〉. (3.9)

Note that the Klein factors enter into the boundary condition as before. Thus, the free

boson theory on a disk is not simply mapped onto a free fermion theory, contrary to

our expectation.

If we may refine the second method, we may achieve our goal to map the bosonic

boundary conditions for the simple boundary states into the fermion boundary conditions

which are linear in the field operators without the non-trivial Klein factors. The case of

the single boson system has been worked out in ref. [8]. The most general forms of the

Klein factors may be written as

ψL = e−
πi
2

(αLpL+βLpR)e−
√

2iXL , ψR = e
πi
2

(αRpL+βRpR)e
√

2iXR . (3.10)

Then we may derive the conditions for the Klein factors to satisfy, requiring that the

boundary condition for the simple boundary states are represented linearly in the fermion

field operators with other conditions such as the fundamental anti-commutation relations

between the fermion field operators. It is not difficult to find a solution to those conditions:

ψL = e−
πi
2

pRe−
√

2iXL , ψR = e−
πi
2

pLe
√

2iXR , (3.11)

with which the Neumann boundary condition is linearly represented as

ψL|N〉 = iψ†
R|N〉, ψ†

L|N〉 = iψR|N〉. (3.12)

The Klein factors for the case of two boson models have been constructed [8] and applied

to the rolling tachyon in string theory [9] and the inhomogenous rolling tachyon [11]. In

the next section we will extend it to the case of the QMB which requires three boson fields

for its free fermion description.

4 Klein factors and simple boundary states

The Klein factors for the fermion fields which correspond to the the three bosons fields of

the QBM may be parametrized as

ψa
L = e−

π
2
i

P

b(αL
abp

b
L+βL

abp
b
R)e−

√
2iXa

L , ψa
R = e

π
2
i

P

b(αR
abpb

L+βR
abp

b
R)e

√
2iXa

R (4.1)

where a, b = 1, 2, 3. The left moving boson field operators and right moving ones may be

expanded in terms of the oscillator modes as follows:

XL(τ + iσ) =
1√
2
xL − i√

2
pL(τ + iσ) +

i√
2

∑

n 6=0

αn

n
e−n(τ+iσ), (4.2a)

XR(τ − iσ) =
1√
2
xR − i√

2
pR(τ − iσ) +

i√
2

∑

n 6=0

α̃n

n
e−n(τ−iσ). (4.2b)

– 6 –
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with the non-vanishing commutators

[xL, pL] = i, [xR, pR] = i, [αm, αn] = mδm+n, [α̃m, α̃n] = mδm+n. (4.3)

The anti-commutation relations between the fermion field operators ψaL, ψaL, ψ
a†
L , ψ

a†
R ,

are ensured if

e
πi
2

(αL
ab−αL

ba) = −1, e
πi
2

(βR
ab−βR

ba) = −1, e
πi
2

(αR
ab−βL

ba) = −1, for a 6= b. (4.4)

We note that the anti-commutation relations between the fermion operators alone cannot

fix the Klein factors. Additonal conditions would be obtained by requiring that the simple

boundary states should be linearly represented in terms of the fermion fields and the inter-

action terms should be represented in terms of the fermion fields only in the fermion theory.

4.1 The Neumann boundary state and Klein factors

The boundary conditions for simple boundary states such as |N,N,N〉 and |D,D,D〉 should

be realized in terms of the fermion operators without the Klein factors. This requirement

will impose some conditions for the Klein factors. We begin with the boundary state

|N,N,N〉. The boundary condition for the state |N,N,N〉 is given linearly in terms of the

bosonic operator as

Xa
L|N,N,N〉 = Xa

R|N,N,N〉 (4.5)

where a = 1, 2, 3, which can be read in terms of normal modes as

xa
L|N,N,N〉 = xa

R|N,N,N〉,
pa

L|N,N,N〉 = −pa
R|N,N,N〉,

αa
n|N,N,N〉 = −α̃a

−n|N,N,N〉.

This condition can be realized linearly in terms of the fermion operators if the following

conditions are satisfied

αL
ab − αR

ab − βL
ab + βR

ab = 0, (4.6)

since

ψa
L|N,N,N〉 = e

π
2
iβL

aaψ†
aRe

π
2
i

P

b(αR
ab−βR

ab−αL
ab+βL

ab)pb
L |N,N,N〉. (4.7)

Under the condition eq. (4.6) we write the Neumann boundary condition in the fermion

theory as

ψa
L|N,N,N〉 = e

π
2
iβL

aaψ†
aR|N,N,N〉,

ψa†
L |N,N,N〉 = e−

π
2
i(αL

aa−βL
aa+βR

aa)ψa
R|N,N,N〉. (4.8)

These fermion boundary conditions should be also consistent with the fundamental anti-

commutation relations between the fermion field operators. It yields additional conditions

e
π
2
i(−αL

aa+2βL
aa−βR

aa) = −1, for a = 1, 2, 3. (4.9)

– 7 –
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4.2 The Dirichlet boundary state and Klein factors

The boundary condition for |D,D,D〉 is given in terms of the bosonic operator as

Xa
L|D,D,D〉 = −Xa

R|D,D,D〉, a = 1, 2, 3. (4.10)

If it is written in terms of normal modes,

xa
L|D,D,D〉 = −xa

R|D,D,D〉,
pa

L|D,D,D〉 = pa
R|D,D,D〉,

αa
n|D,D,D〉 = α̃a

−n|D,D,D〉.

Since it may be written in terms of fermion operator as

ψa
L|D,D,D〉 = e−

π
2
i(βL

aa+βR
aa)ψa

Re
−π

2
i

P

b(αL
ab+αR

ab+βL
ab+βR

ab)p
b
L |D,D,D〉. (4.11)

We should impose the condition

αL
ab + αR

ab + βL
ab + βR

ab = 0. (4.12)

in order to have the Dirichlet boundary condition to be linearly represented by the fermion

field operators

ψa
L|D,D,D〉 = e−

π
2
i(βL

aa+βR
aa)ψa

R|D,D,D〉. (4.13)

Under the condition eq. (4.12), we have

ψa†
L |D,D,D〉 = e−

π
2
i(αL

aa+βL
aa)ψa†

R |D,D,D〉. (4.14)

These two boundary conditions eq. (4.13) and eq. (4.14) should be compatible with the

fundamental fermion anti-commutation relations. It follows from this requirement that

e−
π
2
i(αL

aa+2βL
aa+βR

aa) = −1. (4.15)

Other boundary states and Klein factors. We may repeat the same procedure

for other boundary states such as |D,N,N〉, |N,D,N〉, |N,N,D〉, |D,D,N〉, |D,N,D〉,
|N,D,D〉. However, it does not produce any additional condition for the Klein factors.

Boundary interaction and the Klein factors. We may also apply the same procedure

to the interaction terms eiki·Φ+e−iki·Φ, i = 1, 2, 3. As we require that they are represented

by Hermitian quadratic fermion field operaters without nontrivial Klein factors. Some

details of the procedure are given in the appendix. The results are summarized as follows

α
L/R
1a − α

L/R
2a − β

L/R
1a + β

L/R
2a = 0,

α
L/R
2a − α

L/R
3a − β

L/R
2a + β

L/R
3a = 0, (4.16)

α
L/R
3a − α

L/R
1a − β

L/R
3a + β

L/R
1a = 0,

where a = 1, 2, 3.

– 8 –
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5 Solutions

Now we will show that there exists solutions which satisfy all the conditions derived in the

previous sections. Making use of eqs. (4.6), (4.12), we may write all the conditions only in

terms of α′s

βL
ab = −αR

ab, βR
ab = −αL

ab. (5.1)

Then the rest of equations eq. (4.16) read as

αL
1b + αR

1b − αL
3b − αR

3b = 0, (5.2a)

αL
2b + αR

2b − αL
3b − αR

3b = 0, (5.2b)

αL
1b + αR

1b − αL
2b − αR

2b = 0. (5.2c)

Note that only two of these equations are independent. We may replace these conditions by

αL
ab + αR

ab = 0. (5.3)

We also note that if we make use of eq. (5.1), the consistency conditions eqs. (4.9), (4.15)

reduce to e−πiαR
aa = −1, which can be satisfied by

αR
aa = 2nR

aa + 1, nR
aa ∈ Z, a = 1, 2, 3 (5.4)

The conditions eq. (4.4) which ensure the anticommutation relations between fermion op-

erators, ψa
L, ψa

R reduce to

e
π
2
i(αL

ab−αL
ba) = −1, e

π
2
i(αR

ab+αR
ba) = −1 (5.5)

These conditions are satisfied by choosing

αL
ab − αL

ba = 2(2mL
ab + 1), αR

ab + αR
ba = 2(2nR

ab + 1), a < b, mL
ab, n

R
ab ∈ Z. (5.6)

The remaining conditions for αL
ab are

e
π
2
i(αL

11−αL
13−αL

31+αL
33) = 1, (5.7a)

e
π
2
i(αL

22−αL
23−αL

32+αL
33) = 1, (5.7b)

e
π
2
i(αL

11−αL
12−αL

21+αL
22) = 1. (5.7c)

With eqs. (5.3), (5.4) these conditions are satisfied by

αL
ab + αL

ba = 2(2nL
ab + 1), a < b, nL

ab ∈ Z. (5.8)

Since the Klein factors are not completely fixed yet by the conditions

eqs. (5.3), (5.4), (5.6), (5.8), we introduce further additional conditions

αL
12 = αL

23 = αL
31. (5.9)
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This condition guarantees that the boundary interaction terms have the same phase if they

are fermionized. A set of integers nL
ab, m

L
ab, m

R
ab with the additional conditions eqs. (5.9)

determine an explicit representation of the Klein factors. The simplest one may be

αL = −αR = βL = −βR =







1 2 0

0 1 2

2 0 1






. (5.10)

With this solution, we may write the boundary state for QBM at the critical point in

fermion theory as

|BQBM〉 = : exp

[

V

2

∫

dσ
3
∑

a=1

(

ψa†
L ψ

a+1
L − ψa+1†

L ψa
L

)

]

: |N,N,N〉, (5.11)

= : exp

[

V

2

∫

dσ

3
∑

a=1

(

ψa+1†
R ψa

R − ψa†
R ψ

a+1
R

)

]

: |N,N,N〉,

where ψa+3
L/R = ψa

L/R.

6 Conclusions

The Fermi-Bose equivalence is one of essential tools to study the quantum field theories

on two dimensional space-time, which have various important applications in both string

theory and condensed matter theory. But the Fermi-Bose equivalence has been discussed

mostly for the theories on the space-time without a boundary. If the space-time has a

boundary, we need to refine the conventional methods to construct the Klein factors, which

guarantee the anti-commutation relations between the fermion field operators. We may take

a single boson model as an example to show that the simple boundary conditions such as the

Neumann and Dirichlet boundary conditions cannot be represented linearly in terms of the

fermion field operators if the conventional methods are adopted. An explicit construction

of more appropriate Klein factors for the single boson model has been given in section III.

In order to apply the Fermi-Bose equivalence to the QBM we need to generalize the new

method to deal with the three boson model. The most general form of the Klein factors for

the three boson model has been constructed in section IV and all the necessary conditions

for the Klein factors to satisfy have been derived. Explicitly solving the conditions, we

show that there exists at least a set of solutions to those conditions. With the newly

constructed Klein factors, the QBM model can be properly fermionized. At the critical

point the QBM model can be mapped into a free fermion theory with quadratic boundary

terms. It leads us to the exact boundary state for the QBM at the critical point eq. (5.11).

The constructed boundary state may be used to evaluate explicitly and exactly various

physical quantities such as the partition function and the mobility.

The QBM in the off-critical regions can be also fermionized by the improved Fermi-

Bose equivalence. If η = 1/α′ 6= 1, we may rewrite the bulk kinetic term as

1

4πα′

∫

dτdσ∂αφ
a∂αφa =

1

4π

∫

dτdσ∂αφ
a∂αφa +

1 − α′

4πα′

∫

dτdσ∂αφ
a∂αφa (6.1)
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and treat the second term as an interaction. Applying the Fermi-Bose equivalence to the

QBM, we may have

SQBM =
1

2π

∫

dτdσ

3
∑

a=1

(

ψ̄aγµ∂µψ
a +

g

4π
jµajaµ

)

+
V

4

∫

dσ

3
∑

a=1

(

ψ̄aγ1ψa+1 − ψ̄a+1γ1ψa
)

(6.2)

where g = π(1 − α′)/α′ and jµa = ψ̄aγµψa. Thus, the QBM model is equivalent to a

Thirring model [19, 20] with boundary terms, which are quadratic in fermion fields in

the off-critical region. Using the Thirring action, we may easily calculate the radiative

corrections to the boundary terms, which lead to the renormalization of V [11]:

V = V0

[

1 +
1 − α′

2
ln

Λ2

µ2

]

= V0

[

Λ2

µ2

]

(1−α′)
2

. (6.3)

If α′ < 1, the boundary terms become relevant operators and V tends to grow while they

become irrelevant operators and V scales to zero when α′ > 1 at low energy.

At the critical point, the Thirring interaction vanishes and the model reduces to

a SU(3) × SU(3) free fermion theory with some quadratic boundary terms. Since the

boundary interactions are only quadratic in the fermion fields, we can solve the model

exactly at the critical point. The partition function and other physical correlation

functions can be exactly calculated at the critical point if the exact boundary state for

the QBM eq. (5.11) is employed.

The fermionized action for the QBM on a triangular lattice may be also useful to study

the critical behaviors of the condensed matter theories [13, 14, 17, 18], which are closely

related to the QBM. Since a honeycomb lattice consists of two triangular sublattices, it may

not be difficult to extend this work to the QBM on a honeycomb lattice, of which boson

theory has been discussed by Yi and Kane in ref. [13]. The Fermi-Bose equivalance may

help us to explore further the critical behaviors of the QBM on a honeycomb lattice and

may produce some exact results. One more interesting avenue to explore, being equipped

with the Fermi-Bose equivalne on a triangular lattice (or on a honeycomb lattice), is the

fully packed loop (FPL) model [21–23] on a honeycomb lattice. The effetive field theory for

the fully packed loop model is similar to the local two dimensional action for the QBM,1

eq. (2.3). The only difference between two actions is that the periodic potential for the

QBM is defined on the boundary while the periodic potential for the FPL model is defined

on the bulk. The Fermi-Bose equivalence, if properly extended to the honeycomb lattice,

would work equally well for the FPL model and help us to develop a new fermion field

theory representation of the FPL. We may save it for a future work.

The QBM in one dimension corresponds to the rolling tachyon at the critical point [8, 9]

in string theory and the QBM on a two dimensional square lattice is equivalent to the

inhomogeneous rolling tachyon at the critical point [11]. It suggests that the QBM on a

triangular lattice may be relevant to rolling tachyons in some compact target space-times.

It is certainly an interesting task to explore this direction by extending this work.

1I would like to thank the referee for bringing my attention to refs. [21–23].
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A Boundary interaction and Klein factors

As we require that the boundary interaction terms are written as a sum of fermion bilinear

field operators without nontrivial Klein factors, we obtain a set of conditions to be im-

posed. Since the boundary state for the system |BQBM〉 can be obtained by applying the

boundary interaction terms on the simple boundary state |N,N,N〉, we need to consider

the fermionization of
(

eiki·Φ + e−iki·Φ
)

|N,N,N〉, i = 1, 2, 3.

A.1 Boundary interaction (eik1·Φ + e−ik1·Φ) and Klein factors

The boundary interaction term eik1·Φ acting on the Neumann boundary state may be

written in terms of the left moving fermion field operators as

eik1·Φ|N,N,N〉 = e−
π
2
i(αL

33−αL
13)ψ†

1Lψ3Le
−π

2
i

P

b(αL
1b−αL

3b−βL
1b+βL

3b)pb
L |N,N,N〉. (A.1)

It follows that the fermion form of the interaction term does not contain a non-trivial Klein

factors if the following condition is satisfied

αL
1b − αL

3b − βL
1b + βL

3b = 0, b = 1, 2, 3. (A.2)

Once this condition is imposed, the boundary term eik1·Φ may be written as

eik1·Φ|N,N,N〉 = e−
π
2
i(αL

33−αL
13)ψ†

1Lψ3L|N,N,N〉. (A.3)

The boundary term eik1·Φ can be equally written in terms of the right chiral fermion field

operators as

eik1·Φ|N,N,N〉 = e−
π
2
i(βR

11−βR
31)ψ†

3Rψ1Re
π
2
i

P

b(αR
3b−βR

3b−αR
1b+βR

1b)p
b
L |N,N,N〉.

Thus, if the following condition is satisfied

αR
3b − αR

1b − βR
3b + βR

1b = 0, (A.4)

the the boundary term can be written as a bilinear fermion field operators

eik1·Φ|N,N,N〉 = e−
π
2
i(βR

11−βR
31)ψ†

3Rψ1R|N,N,N〉. (A.5)

As we repeat the same procedure for the boundary interaction term e−ik1·Φ, we obtain

the fermion form of the boundary interaction term as

e−ik1·Φ|N,N,N〉 = e−
π
2
i(αL

11−αL
31)ψ†

3Lψ1L|N,N,N〉. (A.6)
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A non-trivial Klein factor does not arise if the condition eq. (A.2) is satisfied. Rewriting the

boundary interaction term e−ik1·Φ in terms of the right moving fermion operators, we have

e−ik1·Φ|N,N,N〉 = e
π
2
i(βR

13−βR
33)ψ†

1Rψ3R|N,N,N〉 (A.7)

under the condition eq. (A.4).

Therefore, we may write the boundary interaction term eik1·Φ + e−ik1·Φ in terms of

the left moving fermion field operators as
(

eik1·Φ + e−ik1·Φ
)

|N,N,N〉 =
(

e−
π
2
i(αL

33−αL
13)ψ†

1Lψ3L + e−
π
2
i(αL

11−αL
31)ψ†

3Lψ1L

)

|N,N,N〉,
(A.8)

or in terms of the right moving fermion field operators as
(

eik1·Φ + e−ik1·Φ
)

|N,N,N〉 =
(

e−
π
2
i(βR

11−βR
31)ψ†

3Rψ1R + e
π
2
i(βR

13−βR
33)ψ†

1Rψ3R

)

|N,N,N〉.
(A.9)

Note that, however, it is not manifestly Hermitian unless appropriate conditions for the

Klein factors are imposed. It can be achieved by introducing the conditions

e
π
2
i(βR

11−βR
13−βR

31+βR
33) = 1, e

π
2
i(αL

11−αL
13−αL

31+αL
33) = 1. (A.10)

A.2 Boundary interaction (eik2·Φ + e−ik2·Φ) and Klein factors

We may rewrite the boundary interaction terms (eik2·Φ + e−ik2·Φ) acting on |N,N,N〉 in

terms of the left moving fermion field operators only as (without Klein factors)
(

eik2·Φ + e−ik2·Φ
)

|N,N,N〉 =
(

e−
π
2
i(αL

22−αL
32)ψ†

3Lψ2L + e
π
2
i(αL

23−αL
33)ψ†

2Lψ3L

)

|N,N,N〉,
(A.11)

if the following condition is satisfied

αL
3b − βL

3b − αL
2b + βL

2b = 0. (A.12)

It can be made manifestly Hermitian if we require the following additional condition

e
π
2
i(αL

22−αL
23−αL

32+αL
33) = 1. (A.13)

This boundary intraction term can be expressed equivalently in terms of the right

moving fermion field operators as
(

eik2·Φ + e−ik2·Φ
)

|N,N,N〉 =
(

e
π
2
i(βR

23−βR
33)ψ†

2Rψ3R + e−
π
2
i(βR

22−βR
32)ψ†

3Rψ2R

)

|N,N,N〉,
(A.14)

if the following condintion is satisfied

aR
2b − βR

2b − αR
3b + βR

3b = 0, b = 1, 2, 3. (A.15)

If we further require that the interaction terms is manifestly Hermitian, we have

e
π
2
i(βR

22−βR
23−βR

32+βR
33) = 1. (A.16)
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A.3 Boundary interaction (eik3·Φ + e−ik3·Φ) and Klein factors

Applying the same procedure repeatedly to the boundary intraction terms (eik3·Φ+e−ik3·Φ),

we obtain the conditions for the Klein factors

αL
1b − αL

2b − βL
1b + βL

2b = 0, αR
1b − αR

2b − βR
1b + βR

2b = 0, (A.17)

under which the boundary interaction terms can be written in terms of fermion field oper-

ators without non-trivial Klein factors as
(

eik3·Φ + e−ik3·Φ
)

|N,N,N〉 =
(

e−
π
2
i(αL

11−αL
21)ψ†

2Lψ1L + e
π
2
i(αL

12−αL
22)ψ†

1Lψ2L

)

|N,N,N〉,
(A.18)

or
(

eik3·Φ + e−ik3·Φ
)

|N,N,N〉 =
(

e
π
2
i(βR

12−βR
22)ψ†

1Rψ2R + e−
π
2
i(βR

11−βR
21)ψ†

2Rψ1R

)

|N,N,N〉.
(A.19)

These boundary fermion interaction terms are manifestly Hermitian if

e
π
2
i(αL

11−αL
12−αL

21+αL
22) = 1, e

π
2
i(βR

11−βR
12−βR

21+βR
22) = 1. (A.20)
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